
X-601-72-7

11 ii"'. -~ ~ iii
1, 1."7

\- . i

/

STANDARDS -GUIDE 'FOR
S-PACE- AND 'EARTH SCIENCES

COMPUTER SOFTWARE

PREPRINT

.,

I - I I

. ,, r

... . .~~~

-- / ,

1

-I -~ II

_ I I _

.' ,I ,

. I / _

' /
\ \ ' / _ .~~~~~-

JANUARY 1972

.a · r.. . 9 9.l>·.i A

·-,, ' " '.; u % .

-K , _ , _

J

GODDARD SPACE FLIGHT CENTER -
GREENBELT, MARYLAND

.~~~~~~~~~~~

(NASA-TfM-X-65810) STANDARDS GUIDE FOR,
SPACE AND EARTH SCIENCES COMPUTER SOFTWARE
G. Mason, et al (NASA) Jan. 1972 33 p
CSCL 09B

. _

G3/08,
(NASA CR OR 'MX OR ADG3/0UMBER)

Reproduced by

- - x NATIONAL TECHNICAL
INFORMATION SERVICE)

Springfield, Va. 22151

N72- 16 148

Unclas
17037

-I

L

\j

4-

.$ I _
-I I

I

I

6-Ig/
II

-/
I I .

' ' -,.
I -

. . I I
I ',

/

I I

I , - - I

I

I,

- -__,,

J l

I

I

I

X-601-72-7

STANDARDS GUIDE

FOR

SPACE AND EARTH SCIENCES

COMPUTER SOFTWARE

January 1972

I

FOREWORD

This document was prepared by a subcommittee of the Space
and Earth Sciences Computer Users' Committee with the following
membership:

Mr. G. Mason (Chairman) Code 626
Dr. R. Chapman Code 682
Dr. D. Klinglesmith Code 671
Mr. J. Linnekin Code 601
Mr. W. Putney Code 603
Mr. F. Shaffer Code 603
Mr. R. Dapice (Consultant) Code 266

iii

t
eV

TABLE OF CONTENTS

1. INTRODUCTION AND HISTORY

2. MANAGEMENT ..

3. PROGRAMMING STANDARDS
3.1 General

3.1.1 Language Specification
3.1.2 Other Guidelines

3.2 Language
3.3 Core Storage
3.4 Naming Conventions for Variables ..
3.5 Subroutine Communication
3.6 Comment Cards
3.7 Input/Output
3.8 Constants
3.9 Statement Labels
3.10 Error Conditions
3.11 Miscellaneous
3.12 Optimization

4. DOCUMENTATION STANDARDS
4.1 General
4.2 Project Library
4.3 Flowcharting Symbols
4.4 Manuals
4.5 Project Standard Forms

5. TESTING AND ACCEPTANCE TECHNIQUES
5.1 General
5.2 Testing

6. CORRECTION AND UPDATE STANDARDS
6.1 General
6.2 Control Committee

6.2.1 Structure
6.2.2 Responsibility

6.3 Change Procedure
6.3.1 Initiation of Proposal
6.3.2 Implementation of Change
6.3.3 Documentation

7. OPERATIONAL GROUND RULES

REFERENCES ..

BIBLIOGRAPHY.

V

PRECEDING PAGE BLANK NOT FILMED

Page

1-1

2-1

3-1
3-1
3-1
3-1
3-2
3-2
3-2
3-3
3-4
3-4
3-6
3-6
3-6
3-7
3-9

4-1
4-1
4-1
4-1
4-6
4-13

5-1
5-1
5-1

6-1
6-1
6-1
6-1
6-1
6-2
6-2
6-2
6-3

7-1

R-1

B-1

................

................

................

................

................

................

................

................

................

................

................

................

................

................

................

..........

..........

..........

..........

..........

..........

LIST OF FIGURES

Figure Title Page

1 Milestone Chart 2-4
2 Staffing Chart 2-5
3 Example of Comment Cards Following

Subroutine Name 3-5
4 Table of Contents of Task Specification

Manual 4-7
5 Table of Contents of Subsystem

Design Manual 4-8
6 Table of Contents of User's Manual 4-9
7 Task Specification Format 4-10
8 Subroutine Description Format 4-11
9 Cross-Reference Table Formats 4-12

10 Weekly Progress Report 4-14
11 Data Set Layout 4-15
12 U.S. Government 2-Way Memo 4-16
13 Project Change Request 4-17
14 IBM 360 Computer System Problem Report .. 4-18
15 Task Specification Assignment Form 4-19
16 Task/Subroutine Assignment Form 4-20
17 Parameter Name Glossary 4-21
18 Subroutine Control List 4-22
19 Documentation Control List 4-23
20 Discrepancy Report Form 4-24
21 Test Specification Format 5-2
22 Test Report Format 5-3

vi

1. INTRODUCTION AND HISTORY

The Space and Earth Sciences Directorate (SESD) Computer Users'
Committee has been concerned for a long time with insuring the most ef-
ficient use of the available resources by its constituents. On Septem-
ber 10, 1970, a subcommittee was formed to develop a set of guidelines
for the preparation of Systems Analysis and Programming work statements.
The original intent was to use the guidelines for contract work, but
they can serve equally well for in-house efforts. This document is a
consolidation of data from many sources but is not in any way exhaustive
in its detail. The use of these guidelines in whole or in part is com-
pletely voluntary, but we feel that the results obtained through their
use could contribute greatly to the efficient administration of avail-
able monetary and equipment resources.

Throughout the remainder of the document, you may find ideas that
can be used in their entirety or in part for a given task. Seldom will
they all be useful in any single instance, but, used where appropriate,
they may make your part of the project easier. Emphasis is placed on
language standards and the application of good management techniques
to software development.

1-1

2. MANAGEMENT

The work statement can provide several important management tools
for the Technical Officer (T.O.). Some of the most useful of these are
the milestone and staffing charts, the design document, and technical
meetings. The milestone chart (Figure 1) is used to specify all points
in the life of the project which require a sponsor/contractor interface.
The interface may be in the form of a meeting, a document, or a signa-
ture of approval. Items on the chart are listed in order of anticipated
occurrence. When making an estimate of personnel requirements for the
task, you can assign "time to completion" figures to each milestone.
These numbers can be compared with those supplied by the contractor when
submitting his proposal. The major benefits of a milestone chart are
that it enables you to compare the contractor's estimates with your own
and that it provides a firm list of the accomplishments leading to suc-
cessful completion of the project.

The staffing chart is similar to the milestone chart. It is used
to show what each person assigned to the task will be expected to do
during his period of involvement. The major labor milestones are plot-
ted along a time scale, and personnel assignments are shown, one line
per person (Figure 2). In addition to these forms, 11 other forms are
delineated in Section 4 of this report. These are designed to allow
for an orderly and manageable software development process for a large
system.

In a project of any appreciable size that includes a design effort,
one important requirement is the design document. This document should
be prepared by the contracto?' and should embody the results of the de-
sign portion of the projec:. The contents should reflect the original
statement of work and the developments that occurred to modify it, if
any. This document should be reviewed by the T.O. and either approved
or returned with commeits on required improvements or changes. Generally,
the creation of this document occurs after a series of dialogues between
both sides, and it is, therefore, usually close to the desired result when
first submitted. After approval, which should be a predetermined mile-
stone, no significant changes should be permitted without prior written
approval of the T.O. This procedure helps to insure an orderly passage
from design to implementation and allows documentation of any deviations
that might affect project cost or schedule.

The primary mode of communication between the contractor and T.O. is
the periodic meeting. No established rule exists for setting the frequen-
cy, but weekly meetings, at least until delivery of the design document,
are usually reasonable. No matter what the schedule, the opportunity
should exist for meetings or phone calls whenever a situation arises that

2-1

Figure 1. Milestone Chart**

*Government review and approval required before work on next phase
begins.

**Entries shown here are minimum. Others may be added to reflect re-
quirements of individual tasks.

2-2

Programming Schedule Date Completed

Functional Specifications*

Design Specifications*

Flow Charts* .

Coding .

Checkout .

Acceptance Tests*

Format Delivery of Programs

Documentation Schedule

Outline* .

First Draft* .

Initial Artwork*

Edited Draft*

Camera Ready Artwork*

Formal Delivery of Documentation

Figure 2. Staffing Chart

Milestones used on this type of chart can be at a much lower level
than shown on the milestone chart to maintain closer control over
efforts expended.

2-3

STAFFING CHART

TASK # DATE
TASK NAME
T.O.

SCALE: 1 DIV=

MILESTONE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FUNCTIONAL
SPECS

DESIGN
SPECS

FLOW
CHARTS

CODING

CHECKOUT

ACCEPTANCE
TESTS

FINAL
DELIVERY

requires rapid resolution. All meetings and calls should be documented.
Both parties should keep notes, which should document new developments
and action items decided upon. All action items should show whose action
is required and when delivery is expected.

When problems are encountered that might affect the schedule, the
contractor should provide full documentation that explicitly defines
what the problem is, what solution (if any) has been found, and the time
and money losses that might be incurred. Failure to provide this docu-
mentation can severely impair the schedule and cause great difficulty
in recovering the schedule at a later time.

Generally, the task originator has an idea of the particular pro-
gramming language he wishes to be used in the task. This choice is based
on several factors, including language capability and ease of program
maintenance. The choice, once made, should be adhered to stringently.
Deviations should require approval by the Technical Officer. Of prime
importance are those areas which interface with the operating system
and, as a result, might be subject to difficulty when a new version of
the operating system is installed. If the choice of a language is not
clear-cut, you could request proposals for more than one or have the
contractor propose a language based on his determination of what the
proper language should be. Since each language has its advantages and
its liabilities, allow yourself to obtain the best product by implemen-
ting your programs in the best one for your task. A summary of user
software available at GSFC is contained in the GSFC Computer Program
Library Catalog. Principally, this software consists of general pur-
pose closed routines to perform mechanical functions (print pagination,
acquisition of system data, etc.) or mathematical ones (coordinate con-
version, table look-up, etc.). Often, some of this software will satisfy
part of the task requirements. When this situation arises, the contrac-
tor should be advised of its availability. If the contractor elects to
use the software, however, he should accept the responsibility for its
proper operation. His choice is one of design and write versus test
and use. Should you insist on the use of some of these programs, you
will probably have to accept the responsibility for their integrity.
In general, the less maintenance you provide the better; hence, attempt
to have all portions of the software be the responsibility of the con-
tractor.

During the task, the contractor should be required to maintain
adequate back-ups of source programs, compiled programs, and test data
sets. Source programs can be maintained on tape efficiently on the IBM
360 with the program SLIP. This program allows the selective updating
of individual modules and the retention of different versions of the
source program as well as data decks. Most manufacturers supply similar
utility programs as well as programs for preparing copies of other types
of data sets.

2-4

The contractor should acquaint himself with system availability,
operating restrictions, hardware resources, and all related data con-
cerning the system he is working on. Items 1 to 10 in the bibliography
are available to all personnel and should be used as a starting point
for locating all required information. Because the computer situation
is a very dynamic one, operating restrictions and system resources
change. Up-to-date, detailed information is available at the Programmer
Assistance Centers located around the Center. These groups also serve
as focal points for problems encountered with the hardware and software
systems.

2-5

3. PROGRAMMING STANDARDS

3.1 GENERAL

Programming standards for the SESD have been designed to assist the
programmers in writing programs that are compatible. The standards will
also further ease the modification to the programs and aid in the manage-
ment control of the software systems developed for the SESD.

3.1.1 Language Specification

One of the most difficult problems that has plagued users of high-
speed digital computers is the use of programming techniques that fall
outside of the language specification. For this reason we recommend
that only those language elements defined in USAI Standard FORTRAN
(Ref. 1) supplemented by the following vendor dependent (IBM 360) syntax
be used for FORTRAN program development on SESD 360 computers.

Direct Access Input/Output Statements
Double Exponentiation
END and ERR parameters in READ
ENTRY
Generalized Subscripts
Hexadecimal Constant
IMPLICIT
Initial Data Values in Type Statement
Length of Variables as Part of Type Specifications
Literal Enclosed in Apostrophes
Mixed Mode Expressions
More Than Three Dimensions in an Array
PAUSE 'message'
PRINT
PUNCH
READ b, list
T and Z Format Codes
RETURN i

3.1.2 Other Guidelines

The guidelines that are delineated in Sections 3, 4, and 5 of this
report were developed under contract NAS5-11723 (Ref. 2) for Dr. C. E.
Velez of Code 553.1, GSFC. They have been modified where necessary to
fit the requirements of the SESD, but much of the material appears in-
tact.

3-1

In the sections that follow, an effort is made to provide guidelines
for the development of a large software system such as that required for
the flight projects associated with the SESD. For project related or
other large software ventures, it is recommended that all of the control
procedures including the project library be used. For smaller develop-
ment efforts, the standards should be used, but the degree of other con-
trol will be left to the discretion of the Technical Officer.

3.2 LANGUAGE

The following standards are provided for FORTRAN-IV, H, the most
widely used programming language in the Directorate. The object modules
used in system integration are to be compiled with the level H compiler,
optimization level of 2.

3.3 CORE STORAGE

The core storage required for any one job step will be limited as
specified in Section 7. Unlabeled COMMON will be used as "scratch pad"
temporary storage so that total storage requirements for the program
will be reduced.

3.4 NAMING CONVENTIONS FOR VARIABLES

a. A standard naming convention for variables will be followed
in all cases. Integer variables will use names that start
with one of the letters I, J, K, L, M, or N. Real variables
will be assigned names starting with letters A-H and P-Z.
Logical variables will have names starting with the letter
O. Zeros will never be used in variable names.

b. Subroutine names should suggest the function performed within
the routine.

c. Standard names will be established for all frequently used
(major) variables which may be used within several subrou-
tines, and these names will be used throughout the program.
A current glossary of such names will be maintained in the
project library.

3-2

3.5 SUBROUTINE COMMUNICATION

Unlabeled COMMON is to be used as temporary storage within subrou-
tines and may be used additionally as the communication medium for large
blocks of arguments from one subroutine to another where there is only
one transfer level. The integrity of this scratch pad memory is main-
tained only from the calling program to the called program or in the
direct return process.

The number of arguments in a subroutine CALL argument list will be
minimized (no more than eight). Whenever possible, arguments will be
passed by value rather than by name when required in subroutine CALL
lists. The total number of labeled COMMON statements allowed within
any subroutine will be restricted to 12. Variables passed to a subrou-
tine through COMMON should be identified by the use of comment cards or
by the EQUIVALENCE statement. For example, in a subroutine, the state-
ments

COMMON/ALPHA/DUM(50)
EQUIVALENCE (DUM(4),AE)

identify the use of the variable DUM(4), designated in the subroutine as
AE, from the ALPHA COMMON area.

Labeled COMMON will be formatted to have slashes in columns 13 and
20 and have five or less variables per line starting with column 22,
spaced 10 columns apart, with commas in columns 32, 42, 52, 62, and 72
as required. For example:

Col. No. 7 13 20 22 33 43 53 63 72
COMMON/ ALPHA/ AE ,GM ,WE ,RADINA ,X(20,3)

Col. No. 6 22 33 43
* XD ,XOD ,XXDD

A similar convention (starting in column 22) will be used for all
DATA, TYPE, DIMENSION, and EQUIVALENCE statements. For example:

Col. No. 7 22 33 43
DIMENSION A(2) ,GN(2) ,X(20,3)

The COMMON statement is to contain all the dimension information
for its variables. Each COMMON statement is to refer to one named COMMON
area only. No named COMMON area should appear in more than one COMMON
statement unless too many entries exist to allow it. In that case,
multiple statements must be contiguous.

3-3

3.6 COMMENT CARDS

Each subroutine (see page 3-5) will have sufficient comment cards
following the subroutine name to:

a. Identify the function performed by the subroutine
b. Define or reference the mathematical model
c. Explicitly define each of the arguments in the CALL list
d. Identify the major variables
e. Explain labeled COMMON
f. Identify the subroutines used
g. Explicitly identify the input and output

Comments will be of sufficient length to enable other programmers
to follow the flow and determine the purpose of the various parts of
the program. Comments will be added to the coding as it is generated
while the reasons for steps are still obvious to the programmer.

The first card of each function or subroutine will be labeled
FUNCTION or SUBROUTINE. (Comments will not be placed prior to the sub-
program definition.) Sufficient comment cards will be in each subroutine
at each major switching statement (IF, GO TO, CALL, etc.) to provide a
readable logical flow of the program.

Each subroutine will have comment cards to show the programmer's
name and the date the subroutine was completed. When program modifica-
tions are made, the date and programmer's name will be added.

A comment card or series of comments may be preceded by a "blank"
comment card to create the illusion of "paragraphing" the code. Where
feasible, two blank cards preceding and one following a long comment pre-
sent a neat appearance. Refer to the subroutine listing shown in Figure
3 for an example of the proper use of comment cards following the sub-
routine name.

3.7 INPUT/OUTPUT

All program input/output will be performed within a minimum number
of subroutines which will be called from the executive program. All card
input is to be performed in a single routine. Input card images should
be printed out as they are read, allowing for carriage control as required.
All READ statements should use "error" and "end" exits where possible.

3-4

SUBROUTINE MOONAD(DJ,ET,SE,CE,RA,DEC,R)
C VERSION OF 10/28/63
C FORTRAN SUBROUTINE FOR FORTRAN 2 MONITOR ON IBM 7090, 7094
C PURPOSE
C COMPUTES APPARENT RIGHT ASCENSION, DECLINATION, AND
C HORIZONTAL PARALLAX OF THE MOON
C CALLING SEQUENCE
C CALL MOONAD (DJ,ET,SE,CE,RA,DEC,R)
C INPUT

DJ = JULIAN DATE AT 0 HOURS EPHEMERIS TIME
ET = EPHEMERIS TIME IN RADIANS (24 HOURS =

ET IS RESTRICTED TO LIE BETWEEN 0 AND
SE = SINE TRUE OBLIQUITY OF DATE
CE = COSINE TRUE OBLIQUITY OF DATE

NOTE - REFER TO FUNCTION EQN TO COMPU'
OBLIQUITY OF DATE

2 PI RADIANS)
+2 PI RADIANS

TE TRUE

OUTPUT
APPARENT COORDINATES OF THE MOON
RA = APPARENT RIGHT ASCENSION IN RADIANS
DEC = APPARENT DECLINATION IN RADIANS
R = HORIZONTAL PARALLAX IN SECONDS OF ARC

REFERENCE
"ASTRONOMICAL PAPERS PREPARED FOR THE USE OF THE AMERICAN
EPHEMERIS AND NAUTICAL ALMANAC" VOLUME 15, PART 1
("THEORY OF THE ROTATION OF THE EARTH AROUND ITS CENTER
OF MASS" BY EDGAR W. WOOLARD - PAGES 53, 64-66)

METHOD
WOOLARD HAS FORMED AN ABBREVIATED VERSION OF BROWN'S
THEORY OF THE MOON IN HIS PAPER MENTIONED IN REFERENCE.

REQUIRED SUBPROGRAMS - FORTRAN 2 MONITOR
ANALYSIS

RICHARD J. SANDIFER, DATA SYSTEMS DIVISION
GODDARD SPACE FLIGHT CENTER, NASA

PROGRAMMER
SHIRLEY G. STATEN, DATA SYSTEMS DIVISION

GODDARD SPACE FLIGHT CENTER, NASA
PROGRAM MODIFICATIONS

1/15/63 ORIGINAL SUBROUTINE MOON BY SHIRLEY STATEN
10/28/63 MODIFICATION BY J. PEACOCK, DATA SYSTEMS DIVISION

NAME CHANGED TO MOONAD, OUTPUT GIVES RIGHT ASC.
AND DEC. INSTEAD OF LONG. AND LAT. CALLING SEQ.
ENLARGED TO INCLUDE SIN AND COS OF OBL.

***START PROGRAM**

Figure 3. Example of Comment Cards Following Subroutine Name

3-5

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C****

C

The logical unit for all data sets will be a variable name but
not variable at run time. A variable number for the unit will be as-
signed by a DATA statement. All output data sets will be blocked at a
reasonable number of logical records per physical record (such as,
BLKSIZE=7265, LRECL=137 for printed output, and LRECL=80, BLKSIZE=7280
for source code data sets.)

3.8 CONSTANTS

a. There will be a labeled COMMON area for absolute constants and
a separate labeled COMMON area for physical constants that have
nominal values. These and other initial values will be set by
DATA statements with the BLOCK DATA subprogram.

b. All REAL*8 constants must have a 'D' form exponent appended
to them.

3.9 STATEMENT LABELS

Statement labels are to be right adjusted. The format labels are
as follows:

a. All input format statement labels will be numbered 1000-1999.

b. All output format statement labels will be numbered 2000-2999.

All subroutine RETURN labels are to be 999. Executable statement
labels will be in numerical order where possible and labeled 1-998. To
allow for subroutine modifications, statement numbers should be initially
incremented by 10.

To facilitate the use of debugging tools, label numbers will be as-
signed to all GO TO and CALL statements.

3.10 ERROR CONDITIONS

Under no condition will a subroutine return control to the S/360
Operating System; i.e., the STOP statement will not be used. An error
condition code will be established which will be standard for the entire
system. All error codes from a subroutine will be returned to the cal-
ling program for appropriate action.

3-6

3.11 MISCELLANEOUS

a. All DO loops containing two or more statements are to end with
a labeled CONTINUE statement.

b. Parentheses add readability to FORTRAN equations and should be
used to separate computation rather than rely on the FORTRAN
hierarchy of operators.

c. The length of an individual subroutine will be limited to 150
executable source statements plus comment cards.

d. To increase readability, blanks should be used to separate the
variable names from the operators in complex statements.

e. The necessary specification statements in each subroutine will
be arranged in the following order at the beginning of the pro-
gram: (No comments will separate this information although
they may precede it.)

(1) IMPLICIT Statements
(2) TYPE Statements
(3) COMMON BLOCKS
(4) DIMENSION Statements
(5) EQUIVALENCE Statements
(6) DATA Statements

f. Mixed mode arithmetic statements should be avoided.

g. Subroutine names should not be passed through argument lists.

h. Multiple evaluation of functions with the same argument within
a subroutine must be avoided.

i. Use assigned GO TO statements rather than multiple IF statements.

j. Debug runs should be limited to maximum of 1 minute.

k. Assembly language lists and SYSUDUMP and SYSABEND core dumps
for FORTRAN programs are not to be generated unnecessarily.

1. Documentation is to be maintained at a current level by each
programmer.

3-7

m. All format statements will be placed at the end of a subroutine,
and all printed messages will have the first 13 characters as
follows:

PPPPPP NNNN

where PPPPPP is the routine name, left adjusted and padded on
the right with blanks, and NNNN is the format statement number.

The suggestions below can be followed to optimize FORTRAN code, to
achieve better accuracy, and to increase speed of execution. Note,
however, that statements introduced to achieve better accuracy and speed
can reduce the clarity of your code and make debugging more difficult.

n. Apply the information gained during analysis of your problem
before programming to simplify the problem and speed up the
numerical procedure.

o. Arrange the program logic to avoid branches whenever possible.

p. Make the most probable result of all logical IF statements a
simple drop-through instead of a branch.

q. Reduce I/O to the minimum necessary when debugging is complete.

r. Use implied DO loops in input/output in place of I!O within
actual DO loops whenever possible.

s. At the beginning of the program, calculate all quantities that
are constant throughout the progr~a and calculate all quanti-
ties constant throughout a loop outside the loop.

t. Use as few subscripts as possible on arrays; for example, A(720)
instead of A(12,6,10).

u. Using IF statements to determine conditional branches to more
than three labels is less efficient than using unconditional
or computed GO TOs. The computed GO TO uses more overhead
time and space than the unconditional GO TO, but it is still
more efficient than a set of IF statements.

v. Whenever possible, pass variables to subroutines through COMMON
instead of using parameter lists.

3-8

w. Because of round-off error in low-order bits, Io not test for
equal using floating point variables. Use .GE. or .LE.

x. Use SQRT instead of **.5. For small powers, use A*A*A* ... or
A**I with I=R instead of A**R, where R is a floating point in-
teger. (Values raised to integer powers are computed by repeti-
tive multiplication, whereas values raised to real powers are
computed using logarithm and exponential routines. A**R is
about four times slower than A**I.)

y. Use unformatted I/O for data files whenever possible.

z. Perform all initializations in one routine.

aa. Where programs are expected to use large amounts of computer
time, facilities should be built in to allow restarting of the
program at frequent intervals.

3.12 OPTIMIZATION

Program optimization can occur at several times during a project.
The first, and most useful, is during the design stages. There is no
substitute for careful consideration of resource use prior to program
implementation. During development, careful programming and use of
optimizing language processors can enhance the efficiency of a program
(see Sections 3.1 to 3.11). After a program has been written, several
means are available for measuring and improving efficiency. Among these
are the Boole and Babbage SMS package and the services of the Programmer
Assistance Centers. Users are urged to make maximum use of these facili-
ties in order to reduce the burden to themselves and to the entire user
community by eliminating wasteful computer practices.

3-9

4. DOCUMENTATION STANDARDS

4.1 GENERAL

This section defines the SESD documentation requirements which
should be used for large software development efforts. These require-
ments include a Project Library, Flowchart Symbols, Task Specifications,
a Subsystem Design Manual, a User's Manual, and Project Standard Forms.
In addition to the Documentation Standards described here, a document
published recently by NASA Headquarters, entitled "Computer Program Docu-
mentation Guideline" (Ref. 3), contains some general guidelines for
program documentation.

4.2 PROJECT LIBRARY

A project library will be established under the control of a li-
brarian. The library will contain:

a. Source Code Decks
b. Object Code Decks
c. Program Listings
d. Program Documentation
e. Standard Error Codes
f. Test Reports and Results

In addition, the librarian will be responsible for the maintenance
of the following:

a. Task Assignment Form
b. Subroutine Assignment Form
c. Parameter Glossary
d. Project Subroutine Control List
e. Project Documentation Control List

4.3 FLOWCHARTING SYMBOLS

All source programs should be run through AUTOFLOW, and, when it is
necessary to flowchart by hand, the following symbols should be used:

4-1

ENTRY/EXIT

This symbol represents an entry to or exit from a subroutine.

PROCESSING

This symbol represents a group of instructions which perform a
processing function of the subroutine.

INPUT/OUTPUT

This symbol represents an input/output (I/O) process.
be used when the I/O unit or device can vary.)

(It should

FLOW DIRECTION

This symbol represents the direction of processing of data flow.
Normal direction of flow is left to right. Arrowheads are necessary
on all lines of flow. If it is necessary to use lines which oppose
the normal direction of flow, care should be taken to insure that the
arrowhead is placed near the point of entry to or exit from a connec-
tor. Connectors will be used if a line passing more than two symbols
is required.

4-2

DECISION

This symbol represents a decision in the subroutine where alternate
paths are possible. The accompanying text should include a statement
of the comparison, decision, choice, or test. Each exit should be
clearly identified.

PREDEFINED PROCESS

This symbol represents a group of operations which are not detailed in
the flowchart. For example, a function or subroutine can be represented
by this symbol. The name, if any, should be separated at the top of the
symbol.

CONNECTOR

O
This symbol represents an entry
flowchart.

to or exit from other sections of the

CARD

F
This symbol represents a punched card.

4-3

DOCUMENTS

This symbol represents a computer printout.

MAGNETIC TAPE

This symbol represents a magnetic tape.

DISK

This symbol represents a disk.

DISPLAY KEYBOARD

This symbol represents a communication at execution time between the
console or inquiry station and the computer.

4-4

DISPLAY

This symbol represents information which is displayed by a video device.

PAGE DELINEATOR

This symbol is used to indicate a break caused by the end of a page or
line.

FLAG

TIbI
This symbol represents a comment.

4-5

4.4 MANUALS

Task Specification, Subsystem Design, and User's Manuals will be
written as the project is implemented. A task is defined as one or more
subroutines and will be initiated by the Program Design Group completing
a Task Specification. The individual Task Specifications will be the
basis for the Task Specification Manual. The individual tasks will be
assigned to a programmer. The programmer will complete the Subroutine
Descriptions. The individual Subroutine Description will be the basis
of the Subsystem Design Manual. A User's Manual will be written to enable
the users of the system to select the necessary options. The User's
Manual will be initiated at a later date.

The table of contents for the three manuals and the format for the
Task Specifications, Subroutine Descriptions, and Cross-Reference Tables
follow (Figures 4 to 9).

4-6

Table of Contents of Task Specification Manual

Section I - Introduction

Section 2 - General Flowchart of the System

Section 3 - Task Specifications

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Section 4 - Glossary and Common Blocks

Section 5 - References

Figure 4. Table of Contents of Task Specification Manual

4-7

Table of Contents of Subsystem Design Manual

Section I - Introduction

Section 2 - Program Flowchart

Section 3 - Subroutine Descriptions

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Section 4 - Cross-Reference Tables

4.1
4.2

Section 5 - Subroutine Summary

Section 6 - Common Summary

Figure 5. Table of Contents of Subsystem Design Manual

4-8

Figure 6. Table of Contents of User's Manual

4-9

TASK SPECIFICATION FORMAT

Task Name

Contributor's Name

Date

PURPOSE

(This section will describe briefly the purpose of the task in the system. Reference will be made to the

specific portion of the "mathematical requirements" which the task is designed to satisfy.)

METHOD

(This section will include the appropriate mathematical logic and formulae. It will also describe in a

logical manner how the task is partitioned into convenient or logical segments.)

INTERFACE REQUIREMENTS

(All referenced storage areas external to this task will be described in this section. These storage areas

include external tables and arrays, COMMON areas and/or Calling sequences.)

REQUIRED COMPLETION DATE

REFERENCES

(All applicable reference works will be tabulated in this section)

Figure 7. Task Specification Format

4-10

SUBROUTINE DESCRIPTION FORMAT

Subroutine Name and Number

Programmer's Name

PURPOSE

(This section will briefly describe the purpose of the subroutine in the task. Reference will be made to
the particular portion of the task which the subroutine is designed to satisfy.)

METHOD

(This section will include the appropriate mathematical logic and formulae used in this subroutine.)

USAGE

(Specific descriptions of all referenced storage areas external to this subroutine will be given here,

including the formats of external tables and arrays, COMMON areas, and calling sequences.)

CALLED SUBROUTINES

(This section will include a list of the subroutines which will be called by this subroutine along with the

calling sequences.)

FLOWCHARTS

(If logic is involved in the subroutine, ie., the subroutine does not merely compute a mathematical

formula, a flowchart to the level of detail necessary to identify the computational flow and the

interface between this subroutine and other subroutines is presented in this section. Flow is to be from

left to right.)

RESTRICTIONS

(This section will list any restrictions)

Figure 8. Subroutine Description Format

4-11

COMMON BLOCK CROSS-REFERENCE TABLE FORMAT

SUBROUTINE CROSS-REFERENCE TABLE FORMAT

Figure 9. Cross-Reference Table Formats

4-12

CALLING
SUBROUTINES

~~Z~~~~~~~~ z

o O
SUBROUTINES c

CALLED D

SUBROUTINE 1

SUBROUTINE N

4.5 PROJECT STANDARD FORMS

The following forms will be used during the development and imple-
mentation of computer programs for the project.

a. Weekly Progress Report (Figure 10)
b. Data Set Layout (Figure 11)
c. U.S. Government 2-Way Memo (Figure 12)
d. Project Change Request (Figure 13)
e. IBM 360 Computer System Problem Report (Figure 14)

f. Task Specification Assignment Form (Figure 15)
g. Task/Subroutine Assignment Form (Figure 16)
h. Parameter Name Glossary (Figure 17)
i. Subroutine Control List (Figure 18)
j. Documentation Control List (Figure 19)
k. Discrepancy Report Form (Figure 20)

4-13

WEEKLY PROGRESS REPORT

NAME: WEEK ENDING

PROJECT

TIME TO
TASK % COMPLETE . COMPLETE

WORK PLANNED FOR THIS WEEK:

WORK COMPLETED THIS WEEK:

WORK PLANNED FOR NEXT WEEK:

COMMENTS, PROBLEMS, SUGGESTIONS ON THE PROJECT STATUS:

Figure 10. Weekly Progress Report

4-14

DATA SET LAYOUT

DEVICE CHARACTERISTICS

TAPE - TAPE NO.

PARITY: EVEN (DEC) [ODD (BIN) [

CHANNEL: 7 0 9 - OTHER
DENSITY:

DISK - DRUM [CELL O

TRACK SIZE CYL SIZE

OTHER C[

GENERAL

PHYSICAL UNIT FORTRAN LOG UNIT.
LOG RECORD SIZE_ BLOCK SIZE_

RECORD FORMAT

DSNAME:

WRITTEN BY:

(NAME OF SUBROUTINE)

READ BY:

PURPOSE:

RECORD
RECORD SIZE WORD NAME. DESCRIPTION, ETC.

Figure 11. Data Set Layout

4-15

I-

UNITED STATES GOVERNMENT

2- Wayi memo
Subject:

-1

I

USE BRIEF, INFORMAL LANGUAGE

--7

I
1. TO BE RETAINED BY ADDRESSEE

OPTIONAL FORM 27
OCTOBER 1962

GSA FPMR (41 CFR) 101 -11.6

Figure 12. U.S. Government 2-Way Memo

4-16

r
To:
-.0

L

DATE OF REPLY

INSTRUCTIONS
Use routing symbols whenever pos-
sible.
SENDER:

Forward original and one copy.
Conserve space.

RECEIVER:
Reply below the message, keep
one copy, return one copy.

r
Fromn:

L

6027 - O

DATE OF MESCSAGE

PROJECT CHANGE REQUEST

TO: DATE:

FROM:

RE: MODIFICATION TO:

DESCRIPTION OF CHANGE:

REASON FOR CHANGE:

PROGRAMS AFFECTED:

ESTIMATED
ESTIMATED PERSONNEL COMPLETION

HOURS ASSIGNED DATE

PROGRAMMING

DOCUMENTATION

SYSTEM TESTING

CHANGE INITIATED BY: CHANGE APPROVED BY:

Figure 13. Project Change Request

4-17

IBM 360 COMPUTER SYSTEM PROBLEM REPORT

TO:

CURRENT DATE

LOCATION

PHONE -

CODE/COMPANY

DATE JOB RUN

TIME JOB RUN
COMPUTER ASSIGNED
JOB NUMBERS

MACHINE RUN ON_

JUOB NAME

1. AREA OF PROBLEM

JCL l1/O EXECUTION COMPILATION

2. YOUR DESCRIPTION OF THE PROBLEM (USE REVERSE SIDE IF NECESSARY).

3. TYPE OF PROGRAM . RJE -RITS/CRBE FORTRAN

PLI ASSEMBLER GRAPHICS - LINK EDIT UTILITY

SORT/MERGE OTHER (SPECIFY)

4. HAS THIS (PRESENTED) PROGRAM EVER RUN SUCCESSFULLY? YES _ NO

5. HAVE ANY (EVEN ONE CARD) CHANGES BEEN MADE TO PROGRAM OR DATA? YES- NO

IF SO, WHAT?

6. HAS PREVIOUS ASSISTANCE BEEN RENDERED FOR THIS PROGRAM PROBLEM? YES NO

7. MATERIAL BEING PROVIDED

-SOURCE LISTING

-DECK

DUMP - COMPLETION CODE

OBJECT LISTING

TAPE NUMBER

Figure 14. IBM 360 Computer System Problem Report

4-18

NAME

I

TASK SPECIFICATION ASSIGNMENT FORM

TASK NAME START TARGET COMPLETION

AND NUMBER CONTRIBUTOR DATE DATE DATE PROGRAMMER

I i i _ _

Figure 15. Task Specification Assignment Form

TASK/SUBROUTINE ASSIGNMENT FORM

TASK NAME START. TARGET COMPLETION
AND NUMBER PROGRAMMER DATE DATE DATE

= v

Figure 16. Task/Subroutine Assignment Form

4-20

PARAMETER NAME GLOSSARY

FORTRAN NAME MATHEMATICAL SYMBOL DEFINITION (from Standard Reference)

I

I I

_ _ _ _ _ _ _ _ _ i _ _ - _~~~~~~~~~~~~~~~~~~~~~~
______________________ _____________________ ______________________ __________________ i

Figure 17. Parameter Name Glossary

4-21

SUBROUTINE CONTROL LIST

SUBROUTINE SUBROUTINE DOCU- SOURCE OBJECT
NAME NUMBER MENTATION LISTING TEST DECK DECK PROGRAMMER

Figure 18. Subroutine Control List

4-22

DOCUMENTATION CONTROL LIST

SUBROUTINE SUBROUTINE INITIAL DRAFT COMMENTS FINAL FINAL

NAME DOCUMENTATION EDIT TYPED CORRECTIONS TYPING APPROVAL

I 0 - I I -_ I

Figure 19. Documentation Control List

4-23

DISCREPANCY REPORT FORM

DISCREPANCY REPORT DATE:

OBSERVED ON TEST NO.:

OBSERVER:

ASSIGNED TO:

PROGRAM AFFECTED DATA CASE INVOLVED

PROGRAM NAME WORKING FILES

DECK ID PERMANENT FILES

DESCRIPTION OF PROBLEM

(Completed by observer as soon as a discrepancy is recognized.)

Figure 20. Discrepancy Report Form

4-24

5. TESTING AND ACCEPTANCE TECHNIQUES

5.1 GENERAL

During the task, until acceptance by the task Technical Officer,
'the contractor will be required to maintain adequate backups of source
programs, compiled programs, and test data sets. Source programs can
be efficiently maintained on tape with the program SLIP (Ref. 4). This
program allows for the selective updating of individual modules and the
retention of different versions of the source program and data decks.
The SLIP program is used on the IBM System 360, but most manufacturers
supply similar utility programs as well as programs for preparing copies
of other types of data sets. The member names should contain the date
last modified. Only those subroutines still under development are to
be compiled at test time. Those already checked out should be accessed
from the subroutine library in the LINK step.

5.2 TESTING

Each subroutine will be tested individually by the author prior to
integration with the whole program. The manager responsible for inte-
gration of the subroutine or function will require proof to substantiate
the accuracy or correctness of each subroutine in the form of hand check
and/or computer run comparison, as appropriate.

Subroutine testing should include all options and should use data
generated by a driver written by the programmer. Test objectives and
results should be indicated on hard-copy output and retained by the
programmer until subroutine integration into a program structure has
been completed successfully. Test data should include realistic nu-
merical ranges. As subroutines are completed and tested, a master sub-
routine checklist should be updated by the project librarian. Items
that are deliverable to the librarian include source/object decks, pro-
gram listings and documentation, standard error code listings, and test
reports and results.

On the program level, test cases should include all major options,
as specified by the Functional Requirements, and as many additional
options as feasible. Program level testing will be initiated by a Test
Specification. After a test has been completed, Test and Discrepancy
Reports, if any, will be completed. Test Specification and Test Report
formats follow. The Discrepancy Report Form is shown in Section 4.

Subsystem and system tests will be of the parallel type, with com-
parison runs generated by existing systems and simulated data runs that
will yield predictable results.

5-1

TEST SPECIFICATION FORMAT

TEST (State objective of this particular test; i.e., what do you expect to prove by
performing this experiment?)

PROCEDURE

(This section will include data sources, internal options to be used, and output reports
required.)

EVIDENCE

(Identify hard copy required to prove objective.)

QUANTITATIVE CRITERIA

(Describe items in reports to be compared with previously established numerical values.
What are the values? If another job is required to establish these standards describe the
job(s) or reference them Prescribe acceptable tolerances. Show how measures are to be
computed and how to determine whether the correct value was obtained in the test.)

Figure 21. Test Specification Format

5-2

TEST REPORT FORMAT

TEST REPORT Test:

Date:

Computer Run:.

Analyst:

TEST

(Briefly describe the objective of this experiment. Note any differences in objective
between this experiment and the corresponding experiment number described in the Test
Specification.)

PROCEDURE

(Same as in Test Specification Format.)

EVIDENCE

(Include actual documentation obtained during the test. On generated reports, indicate
which items were used and their purpose.)

QUANTITATIVE ANALYSIS

(Show how the quantitative criteria of the test specifications were met.)

QUALITATIVE ANALYSIS

(Does this experiment prove the objective? Conditionally? Are the exceptions significant
or can they be ignored? Can the test be accepted after correcting the exceptions or
should this test be rescheduled after the exceptions are corrected?)

Figure 22. Test Report Format

5-3

6. CORRECTION AND UPDATE STANDARDS

This section pertains primarily to large, multi-user systems. For
smaller applications, the Technical Officer should perform the functions
described below.

6.1 GENERAL

Standards to direct and control the modifications to the system
must be established once the initial version of the system becomes op-
erational. The objectives of these standards are to maintain one system
which will respond to the requirements of the responsible organization
and to eliminate the need for a proliferation of systems. Proper con-
trol will allow the system to remain dynamic and be made to reflect the
state-of-the-art.

6.2 CONTROL COMMITTEE

6.2.1 Structure

A control committee with one or more members from the re-
sponsible organization, one member from the project, and one member from
the computer center (Code 603), will have total responsibility and
authority to make any changes necessary to maintain the status of the
system. The members will be selected for a tenure of 12 months. Ini-
tially, two persons will serve for a 6-month period and two for a 12-
month period. Thereafter, two new members will be selected every 6
months insuring continuity of the committee as well as providing val-
uable experience to various individuals in the respective branches. The
members will select a chairman who will serve for a specified period
and maintain a record of all committee actions.

6.2.2 Responsibility

The Control Committee will be responsible for evaluating
and approving all proposed changes to the system. In the evaluation of
a proposal, the committee will determine the impact on the system and
the total cost (including manpower machine and documentation require-
ments). The committee will have the authority to obtain any assistance
needed to properly evaluate any proposal and will be required to submit
regular progress reports to project management. The proposer will be
notified within 15 working days of the committee's action.

6-1

6.3 CHANGE PROCEDURE

6.3.1 Initiation of Proposal

All proposals should be submitted to the committee chairman
using the U.S. Government 2-Way Memo (Optional Form 27, October 1962,
GSA FPMR (41CFR) 101-11.6). Such proposals should have branch level
approval. The respective branch head should initial the form prior
to submittal.

Proposals will be classified as follows:

a. Problems and errors that cannot be resolved by the user
b. Corrections
c. Updates

All supporting documents and materials should be submitted
with the proposal, including the Discrepancy Report Form for problems
noted during operation.

After the committee has evaluated the proposal and submitted
a reply, the proposer should indicate if the committee's action is ac-
ceptable or offer further suggestions. Upon failure of the committee
to resolve the proposal, branch level resolution will be necessary.

6.3.2 Implementation of Change

In implementing a change, the committee chairman will submit
a Project Change Request form to the group responsible for the mainte-
nance of the system. He will also be responsible for:

a. Completion of the task
b. Proper testing of the modified system
c. Updating and distribution of documentation
d. Submitting notice, at least 30 days in advance, to

all users indicating the change and the implementation
date

The chairman will serve as the maintenance project leader,
submit progress reports to the proposers, and maintain all necessary
records. He is to have access to the necessary personnel and resources
to perform this function.

6-2

The group responsible for updating the system should adhere
to the requirements and standards as established in this document. The
following materials should be submitted to the chairman of the Control
Committee:

a. Completed Project Change Request form
b. Source deck with listing
c. Object deck with assembly listing
d. Test results
e. Corrected documentation to include:

(1) Subroutine name
(2) Programmer's name
(3) Date of change
(4) Variables affected, including COMMON BLOCKS
(5) Modified flowchart

6.3.3 Documentation

All users are to be sent updated documents prior to the
actual updating of the system. No change to the system will be con-
sidered complete until this has been completed. The system librarian
will serve as the distributor of all documentation and notices to users.

6-3

7. OPERATIONAL GROUND RULES

As was mentioned previously, the SESD 360 computers are operated
to provide rapid turnaround for the greatest number of users. To ac-
complish this, the priority of any job is inversely proportional to the
resources it requires. Listed below are some of the ground rules that
are currently in effect.

a. No block or dedicated time is given where other users are
excluded.

b. No commitment of machine time by hours or runs is made to
any individual or organization.

c. No user disk packs or data cells are permitted.

d. Priority is based upon use of system resources (CPU time,
I/O time, core size, I/O devices). Smaller requirements
get higher priorities.

e. Jobs are not permitted to have a dedicated printer, card
reader, punch, or remote terminals.

f. Backup of disk data sets is the responsibility of the user.

g. Jobs requiring over 1 hour CPU or I/O time will have to be
scheduled by the system manager.

h. No decimal arithmetic is permitted on the 360/91.

i. Jobs should not require operator communication via WTO/WTOR

macros from application program.

j. No system modifications will be permitted. For instance a
special SVG.

These rules have been established in order to make the SESD machines
meet requirements for high throughput and fast turnaround. Additional
rules may be established from time to time to help meet these objectives.

The contractor must keep these rules in mind in making estimates of
elapsed time and computer time needed to complete this requirement. The
programmer should note that the upper limit on job duration (sum of CPU
and I/O time estimates) during prime shift is 6 minutes on the SESD
360/75 and 4 minutes on the SESD 360/91. A more realistic limit for
quick turnaround is 1 to 2 minutes on the SESD 91 and 1 to 3 minutes on
the SESD 75. With jobs in these limits, it is possible to expect the
turnaround time to be most often about 1 to 2 hours.

7-1

The programmer should take care not to design into any program

requirements for very large amounts of any resource. This specifically
includes scratch disk space, core storage, and tape drives.

In addition to the above ground rules, the following information
should be useful to programmers:

a. WTR NEWS - WTR NEWS supersedes all other information
sources. It follows the header pages of every run.
If a run has not been made for several days, a pro-
cedure is available to get back news.

b. NEWSLETTER - The GSFC Computer Newsletter is published
every 2 weeks or as necessary. All programmers should
be on the distribution list. A request can be made to
receive all back copies. The Newsletter supersedes all
other information sources except WTR NEWS.

c. The ground rules for machine usage as set forth above
would appear at this level in the hierarchy of information.

d. The SESD Users' Guide - Each programmer should be fur-
nished copies of the SESD Users' Guide. He should be
instructed to become familiar with its contents.

For CRBE jobs the following restrictions apply:

a. Only 1- to 5- minute jobs (CPU + I/O), 300K maximum will
be accepted to be run during the prime shift, 09:30 to
16:00 Monday through Friday.

b. No more than three jobs per I.D. of 1 to 5 minutes total
time (CPU + I/O) in the job queue at one time.

c. After 16:00, 6- to 10-minute jobs will be accepted.

d. No more than two jobs of 6 to 8 minutes will be accepted,
or no more than one job having a total estimated running
time in the 9- to 14-minute range.

e. No job having an estimated running time of greater than
14 minutes will be accepted without prior approval from
the Computer Manager.

f. During normal workload days, jobs other than special
priorities over 300K and 5 minutes (CPU + I/O) will not
be processed. After 17:00, jobs over 5 minutes will be
processed in the order of their priority. Backlog is run
by the earliest date.

7-2

REFERENCES

1. USAI Standard FORTRAN, American National Standards Institute, Inc.,
USA X3.9, 1966.

2. "Programming Standards Manual for the Goddard Trajectory Determi-
nation System," Goddard Space Flight Center, Contract Report
NAS5-11723, August 1970.

3. "Computer Program Documentation Guideline," NASA Publication NHB
2411.1, July 1971.

4. "SLIP (Source Language Inquiry Program)," Space and Earth Sciences
Computing Center User's Guide, Goddard Space Flight Center, May
1970, p. 240-241.

R-1

BIBLIOGRAPHY

1. Catalog of the GSFC Computer Program Library, Goddard Space Flight
Center, recurring.

2. "Computer Program Documentation Guideline," NASA Publication NHB
2411.1, July 1971.

3 Dean, J. L., "Optimization Techniques for FORTRAN IV (G and H),
Programs Written for the IBM 360 Under OS," Goddard Space Flight
Center, X-543-71-99, March 1971.

4. GSFC Computer Newsletter, Goddard Space Flight Center, recurring.

S. M&DO IBM 360 Users Guide, Goddard Space Flight Center, September
1971.

6. "A Programmer's Guide to the Goddard Space Flight Center Computer
Program Library," Goddard Space Flight Center, X-540-69-107,
February 1969.

7. "Programming Standards Manual for the Goddard Trajectory Determi-
nation System," Goddard Space Flight Center, Contract Report
NAS5-11723, August 1970.

8. "SLIP (Source Language Inquiry Program," Space and Earth Sciences
Computing Center User's Guide, Goddard Space Flight Center, May
1970.

9. Space and Earth Sciences Computing Center User's Guide, Goddard
Space Flight Center, recurring.

10. USAI Standard FORTRAN, American National Standards Institute, Inc.,
USA X3.9, 1966.

B-1

